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In this paper, we examine the localization problem of compact invariant sets of systems with the
differentiable right-side. The localization procedure consists in applying the iterative algorithm
based on the first order extremum condition originally proposed by one of authors for periodic
orbits. Analysis of a location of compact invariant sets of the Lanford system is realized for all
values of its bifurcational parameter.
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1. Introduction

The study of compact invariant sets is one of the
important topics in the qualitative theory of ordi-
nary differential equations closely related to anal-
ysis of a long-time behavior of a system, see e.g.
[Foias et al., 1996] and references therein. Dur-
ing the past years, the focus of interest for many
researchers has been towards finding some geomet-
rical bounds for attractors, periodical orbits and
chaotic dynamics of a nonlinear autonomous differ-
entiable right-side system

ẋ = f(x), x = (x1, . . . , xn)T ∈ Rn, (1)

f(x) = (f1(x), . . . , fn(x))T ∈ C∞(Rn). Mainly, in
the existing literature this problem has been solved
with the help of Lyapunov-type functions. One can
mention a paper [McMillen, 1998] concerning the
Rikitake system and papers [Doering & Gibbon,
1995; Leonov et al., 1996; Li et al., 2005, Pogrom-
sky et al., 2003; Swinnerton-Dyer, 2001] concerning
the Lorenz system.

The method for finding families of semiper-
meable surfaces was proposed in [Giacomini &
Neukirch, 1997] and then developed in [Neukirch
& Giacomini, 2000] and in other publications of
these authors. In this paper, we consider the
application of the localization method of periodic
orbits [Krishchenko, 1995, 1997a, 1997b, 1997c;
Krishchenko & Shalneva, 1998, 2000; Starkov &
Krishchenko, 2004, 2005] to studies of a location of
compact invariant sets of the Lanford system. Our
basic tool is to apply the iterative method of the
localization of periodic orbits originally introduced
in [Krishchenko, 1997a] to the localization problem
of compact invariant sets of the system (1).

Here, when we talk about a localization we have
in mind the following problem: find the set Ω ⊂ Rn

(a localization set) that contains all compact invari-
ant sets of the system (1).

The structure of the paper is as follows. In
Sec. 2, we formulate basic definitions and present
main assertions applied in the localization process.
Other sections discuss the Lanford system. As it
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was noted in [Hassard et al., 1981], this system had
been constructed by W. F. Lanford in a private com-
munication in connection with the analysis of an
infinite system of ordinary differential equations pro-
posed in [Hopf, 1948] for a study of a fluid dynamic
turbulence model. Section 3 contains main results on
a localization of compact invariant sets of the Lan-
ford system. We describe in Sec. 4 the way to improve
a localization set in the case 1/2 < v < 1 for which
the most diverse dynamics is observed. In Sec. 5, we
compare our results with those of [Hassard et al.,
1981] and [Nikolov & Bozhkov, 2004] respecting peri-
odic orbits and the attractor of the Lanford system.
Also, we provide additional information concerning
a localization of compact invariant sets of the Lan-
ford system. In Sec. 6 we present conclusions.

2. Some Preliminaries

We start from two basic concepts, see e.g. in [Guck-
enheimer & Holmes, 1983], of qualitative theory of
ordinary differential equations used in this paper.

By ϕ(x, t) we denote a solution of (1), with
ϕ(x, 0) = x for any x ∈ Rn.

Definition 1. A set G ⊂ Rn is called invariant for
(1) if for any x ∈ G we have: ϕ(x, t) ∈ G for all
t ∈ R.

Definition 2. The union of equlibrium points with
trajectories connecting them is referred to as het-
eroclinic orbits when they connect disctinct points
and homoclinic orbits when they connect a point
to itself.

Compact invariant sets can contain equlib-
rium points, periodic orbits, heteroclinic orbits,
homoclinic orbits and trajectories of more complex
structure. We define a maximal (with respect to
inclusions) compact invariant set of (1) as a com-
pact invariant set containing any compact invariant
set of (1). A maximal compact invariant set may
not exist.

In this section we describe localization sets
which contain all compact invariant sets of the sys-
tem (1). The localization of invariant subsets such
as periodic orbits, homoclinic orbits, heteroclinic
orbits, invariant tori inside an invariant set claims
to apply additional ideas which is beyond the scope
of this paper.

Let f =
∑n

i=1 fi(x)∂/∂xi be a vector field on
Rn corresponding to the system (1). Let Lfh(x) =∑n

i=1 fi(x)∂h(x)/∂xi be a Lie derivative of the func-
tion h ∈ C∞(Rn) with respect to the vector field f .

We define a set

Sh = {x : Lfh(x) = 0}.
Below we shall use notations:

hsup = sup
Sh

h(x),

hinf = inf
Sh

h(x).
(2)

For any function h ∈ C∞(Rn) the following
assertions are valid.

Proposition 1. Let Q be a set in Rn. If Sh∩Q = ∅
then the system (1) has no compact invariant sets
(totally) contained in Q.

Proposition 2. Any compact invariant set G of the
system (1) is contained in the set

Ωh = {x : hinf ≤ h(x) ≤ hsup}.
If the set Ωh is compact then the system (1)

has a maximal compact invariant set which is con-
tained in Ωh.

Corollary 3. Any compact invariant set of the sys-
tem (1) is contained in the set Ω = {∩Ωh, h ∈
C∞(Rn)}. If the set Ω is compact then the system
(1) has a maximal compact invariant set which is
contained in Ω.

Sometimes one can find the compact localiz-
ing set containing all periodic orbits using only one
function, see papers of Krishchenko and Starkov
mentioned above. This requirement can be satisfied,
but it is difficult to find a corresponding function.
The next methodology based on using two and more
functions is more promising.

Theorem 4. Let hm(x),m = 0, 1, 2, . . . be a sequence
of functions from C∞(Rn). Sets

Ω0 = Ωh0, Ωm = Ωm−1 ∩ Ωm−1,m, m > 0,

with

Ωm−1,m = {x : hm,inf ≤ hm(x) ≤ hm,sup},
hm,sup = sup

Shm∩Ωm−1

hm(x),

hm,inf = inf
Shm∩Ωm−1

hm(x),

contain any compact invariant set of the system (1)
and

Ω0 ⊇ Ω1 ⊇ · · · ⊇ Ωm ⊇ . . . .

Proofs of these results are realized in the same
way like in [Krishchenko, 1997a, 1997b].
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3. Localization of Compact Invariant
Sets of the Lanford System

Let us consider the Lanford system

ẋ1 = (v − 1)x1 − x2 + x1x3,

ẋ2 = x1 + (v − 1)x2 + x2x3,

ẋ3 = vx3 − x2
1 − x2

2 − x2
3,

(3)

where v is a parameter. Let f be the vector field of
the Lanford system.

A. Case v = 0.
For the function h0(x) = x3 we find

Lfh0(x) = −x2
1 − x2

2 − x2
3.

Therefore the set

Sh0 = {x : x2
1 + x2

2 + x2
3 = 0} = {(0, 0, 0)T }

coincides with the equilibrium point of the system,
and in this case the maximal compact invariant set
of the Lanford system consists of the unique equi-
librium point x = 0.

Our localization analysis presented below is
based on Theorem 4.

B. Case v < 0.
We use functions h0(x) = x3 and h1(x) = (x2

1 +
x2

2)/2.

(0.) If v < 0 then we have for the function h0(x) =
x3 that

Lfh0(x) = vx3 − x2
1 − x2

2 − x2
3,

Sh0 =
{

x : x2
1 + x2

2 +
(
x3 − v

2

)2
=

v2

4

}
,

h0,sup = sup
Sh0

h0(x) = 0, h0,inf = inf
Sh0

h0(x) = v,

and all compact invariant sets are located in the set

Ω0 = Ωh0 = {x : v ≤ x3 ≤ 0}.
(1.) Consider the second function h1(x) = (x2

1 +
x2

2)/2. Then

Lfh1(x) = (v − 1 + x3)(x2
1 + x2

2),
Sh1 = {x : x2

1 + x2
2 = 0} ∪ {x : x3 = 1 − v}

= {x : x = (0, 0, x3)} ∪ {x : x3 = 1 − v},
Sh1 ∩ Ω0 = {x = (0, 0, x3) : v ≤ x3 ≤ 0

since v < 0. We find
h1,sup = sup

Sh1
∩Ω0

h1(x) = 0,

h1,inf = inf
Sh1

∩Ω0

h1(x) = 0,

Ω0,1 = {x : x2
1 + x2

2 = 0} = {x : x1 = 0, x2 = 0},

Ω1 = Ω0 ∩ Ω0,1 = {x : x1 = 0, x2 = 0, v ≤ x3 ≤ 0}.
All compact invariant sets belong to the compact
set Ω1. The Lanford system has the form

ẋ1 = 0, ẋ2 = 0, ẋ3 = vx3 − x2
3

on the set Ω1. Therefore the set Ω1 is an invari-
ant one. The set Ω1 is the heteroclinic orbit of the
system connecting two equilibrium points (0, 0, 0)T

and (0, 0, v)T . The set Ω1 is the maximal com-
pact invariant set of Lanford system in the case
v < 0.

C. Case v > 0.
(0.) We choose h0(x) = x3. Then

Lfh0(x) = vx3 − x2
1 − x2

2 − x2
3,

Sh0 =
{

x : x2
1 + x2

2 +
(
x3 − v

2

)2
=

v2

4

}

h0,sup = sup
Sh0

h0(x) = v, h0,inf = inf
Sh0

h0(x) = 0

and all compact invariant sets are located in the set

Ωh0 = {x : 0 ≤ x3 ≤ v}.
Let us consider points of planes x3 = 0 and

x3 = v different from the equilibrium points
(0, 0, 0)T and (0, 0, v)T . For these points we obtain
from the third equation of the Lanford system that

ẋ3 = −x2
1 − x2

2 < 0.

It means that trajectories of the Lanford system
intersect transversally the planes x3 = 0 and
x3 = v outside the equilibrium points (0, 0, 0)T and
(0, 0, v)T . Therefore we have that all compact invari-
ant sets are located in the set

Ω0 := {x : 0 < x3 < v} ∪ (0, 0, 0)T ∪ (0, 0, v)T . (4)

(1.) Now we choose h1(x) = (x2
1 + x2

2)/2. Then

Lfh1(x) = (v − 1 + x3)(x2
1 + x2

2),
Sh1 = {x : x2

1 + x2
2 = 0} ∪ {x : x3 = 1 − v}

= {x : x = (0, 0, x3)} ∪ {x : x3 = 1 − v},
Sh1 ∩ Ω0 = {x = (0, 0, x3) : 0 ≤ x3 ≤ v}

∪ {x : x3 = 1 − v, 0 < x3 < v}.

(5)

The condition 0 < 1 − v < v is equivalent to
0.5 < v < 1.
(1.1.) Consider the case {0 < v ≤ 0.5} ∪ {v ≥ 1}.
The set

{x : x3 = 1 − v, 0 < x3 < v}
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is empty. Hence we find

Sh1 ∩ Ω0 = {x = (0, 0, x3) : 0 ≤ x3 ≤ v},
h1,sup = sup

Sh1
∩Ω0

h1(x) = 0,

h1,inf = inf
Sh1

∩Ω0

h1(x) = 0,

Ω0,1 = {x : x2
1 + x2

2 = 0} = {x : x1 = 0, x2 = 0},
Ω1 = Ω0 ∩ Ω0,1 = {x = (0, 0, x3) : 0 ≤ x3 ≤ v}.

As in the case v < 0, the obtained set Ω1 (a hete-
roclinic orbit) is the maximal compact invariant set
of the Lanford system in the case {0 < v ≤ 0.5} ∪
{v ≥ 1}.
(1.2.) Consider the case 0.5 < v < 1. In this case
the set

{x : x3 = 1 − v, 0 < x3 < v}
is a plane and we obtain

h1,sup = sup
Sh1

∩Ω0

h1(x) = +∞,

h1,inf = inf
Sh1

∩Ω0

h1(x) = 0,

Ω0,1 = R3,

Ω1 = Ω0,1 ∩ Ω0 = Ω0.

(2.) Let h2(x) = (1/2)(x2
1 + x2

2 + x2
3), 0.5 < v < 1.

We get

Lfh2 = (x2
1 + x2

2 + x2
3)(v − 1) + x2

3 − x3
3

and

Sh2 = {x : (x2
1 + x2

2 + x2
3)(v − 1) = −x2

3 + x3
3},

Sh2 ∩ Ω1 = {x : (x2
1 + x2

2 + x2
3)(v − 1) = −x2

3

+ x3
3, 0 ≤ x3 ≤ v}.

In order to find h2,inf , h2,sup we consider

x2
3

2
≤ h2(x) |Sh2

∩Ω1=
1

2(v − 1)
(x3

3 − x2
3),

where 0 ≤ x3 ≤ v.
Under 0 ≤ x3 ≤ v the inequality

x2
3

2
≤ 1

2(v − 1)
(x3

3 − x2
3)

is fulfilled. Finding inf and sup of the function

1
2(v − 1)

(x3
3 − x2

3),

under the condition x3 ∈ [0, v], we get that

h2,inf = inf
Sh2

∩Ω1

h2(x) = 0,

h2,sup = sup
Sh2

∩Ω1

h2(x) =




v2

2
, 0.5 < v ≤ 2

3
,

2
27(1 − v)

,
2
3

< v < 1,

Ω1,2 = {x : x2
1 + x2

2 + x2
3 ≤ 2h2,sup}.

So all compact invariant sets are located in the set

Ω2 = Ω1 ∩ Ω1,2 = {x : x2
1 + x2

2 + x2
3 ≤ 2h2,sup,

0 < x3 < v} ∪ (0, 0, 0)T ∪ (0, 0, v)T .

(6)

(3.) Consider the case 0.5 < v < 1. Let

h3(x) = h1(x) =
x2

1 + x2
2

2
.

Then Sh3 = Sh1, see (5), and we have for Ω2

from (6):

Sh3 ∩ Ω2 = {x = (0, 0, x3) : x2
1 + x2

2 + x2
3

≤ 2h2,sup, 0 < x3 < v} ∪ (0, 0, 0)T

∪ (0, 0, v)T ∪ {x : x2
1 + x2

2 + x2
3

≤ 2h2,sup, 0 < x3 < v, x3 = 1 − v}
= {x = (0, 0, x3) : x2

3 ≤ 2h2,sup,

× 0 ≤ x3 ≤ v}
∪ {x : x2

1 + x2
2 ≤ 2h2,sup

− (1 − v)2, x3 = 1 − v}
= {x = (0, 0, x3) : 0 ≤ x3 ≤ v} ∪ {x : x2

1

+ x2
2 ≤ 2h2,sup − (1 − v)2, x3 = 1 − v}.

In order to prove the last equality of the sets
we consider two cases.

Case 1. Let v ∈ (0.5, 2/3]. Then h2,sup = v2/2,
and the inequality x2

3 ≤ 2h2,sup = v2 follows from
0 ≤ x3 ≤ v. In addition,

2h2,sup − (1 − v)2 = 2v − 1 ≥ 0.

Hence

Sh3 ∩ Ω2 = {x = (0, 0, x3) : 0 ≤ x3 ≤ v}
∪ {x : x2

1 + x2
2 ≤ 2v − 1, x3 = 1 − v}.

Case 2. Let v ∈ [2/3, 1). Then h2,sup = 2/(27(1 −
v)), and we have the inequality 2h2,sup ≥ v2 for
these values of v. Therefore the inequality x2

3 ≤
2h2,sup follows from 0 ≤ x3 ≤ v. In addition,

2h2,sup − (1 − v)2 =
4

27(1 − v)
− (1 − v)2 > 0.



Localization of Compact Invariant Sets 3253

Hence

Sh3 ∩ Ω2 = {x = (0, 0, x3) : 0 ≤ x3 ≤ v}

∪
{

x : x2
1 + x2

2 ≤ 4
27(1 − v)

− (1 − v)2, x3 = 1 − v

}
.

In these two cases we get

h3,sup = sup
Sh3

∩Ω2

h3(x) = h2,sup − (1 − v)2

2
,

h3,inf = inf
Sh3

∩Ω2

h3(x) = 0,

Ω2,3 = {x : x2
1 + x2

2 ≤ 2h2,sup − (1 − v)2}.
If 0.5 < v < 1 all compact invariant sets are

located in the set

Ω3 = Ω2 ∩ Ω2,3 = {x : x2
1 + x2

2 + x2
3 ≤ 2h2,sup,

0 < x3 < v, x2
1 + x2

2 ≤ 2h2,sup − (1 − v)2}
∪ (0, 0, 0)T ∪ (0, 0, v)T . (7)

In order to simplify this form of the localization
set we consider the same two cases.

Case 1. Let v ∈ (0.5, 2/3]. Then 2h2,sup = v2.
Hence, the localization set is given by

{x : x2
1 + x2

2 + x2
3 ≤ v2, 0 < x3 ≤ v, x2

1 + x2
2

≤ 2v − 1} ∪ (0, 0, 0)T . (8)

Case 2. Let v ∈ (2/3, 1). Then 2h2,sup = 4/(27(1−
v)) > v2 and for these values of v we have that the
localization set is given by{

x : x2
1 + x2

2 + x2
3

≤ 4
27(1 − v)

, 0 < x3 < v, x2
1 + x2

2

≤ 4
27(1 − v)

− (1 − v)2
}

∪ (0, 0, 0)T ∪ (0, 0, v)T . (9)

4. A Closer Look at the Localization
Set in Case 0.5 < v < 1

We have found exactly the maximal compact invari-
ant sets of the Lanford system in the case {v ≤
0.5} ∪ {v ≥ 1} and the localization set (7) for
0.5 < v < 1. The case 0.5 < v < 1 is the most inter-
esting since the Lanford system exhibits a chaoti-
cal behavior in some neighborhood of v = 2/3, see
[Nikolov & Bozhkov, 2004].

As it follows from (7)–(9), the localizing set Ω3

is monotonically extended up to the set {x : 0 <
x3 < v} ∪ (0, 0, 0)T ∪ (0, 0, v)T , with v → 1 − 0.
Below we demonstrate that it is possible to improve
the localization of all compact invariant sets by
using the localizing function H(x) = 0.5(x2

1 + x2
2)+

(v − 1)x3.
Since the localizing set Ω3 is computed by suf-

ficiently long computations it is easy to see that
a continuation of the iterative procedure with
h4 := H(x) leads to cumbersome computations.
Instead of this, let us consider another localizing
procedure with the function h0(x) used above and
a new function h1(x). Below in our computations
we use the set Ω0 defined in the formula (4). Let us
take the function h̃1(x) = H(x) as the new function
h1(x). It leads to the following computations at the
first step of the new localizing procedure.

1. Let h̃1(x) = 0.5(x2
1 +x2

2)+(v−1)x3, 0.5 < v < 1.
We obtain

Lf h̃1 = x3(x2
1 + x2

2 + x3(1 − v) + v(v − 1))

and

Sh̃1
= {x : x3 = 0} ∪ {x : x2

1 + x2
2 + x3(1 − v)

+ v(v − 1) = 0},
Sh̃1

∩ Ω0 = {x : x2
1 + x2

2 + x3(1 − v)

+ v(v − 1) = 0, 0 < x3 ≤ v} ∪ (0, 0, 0)T .

Let P = {x : x2
1 + x2

2 + x3(1 − v) + v(v − 1) =
0, 0 < x3 ≤ v}. In order to find h̃1,inf , h̃1,sup we
consider

h̃1(x) |P =
3
2
(v − 1)x3 +

v(1 − v)
2

,

where 0 < x3 ≤ v, and h̃1(0, 0, 0) = 0. Therefore

h̃1,inf = v(v − 1), h̃1,sup =
v(1 − v)

2
,

Ω0,1 =
{

x : −v

2
+

x2
1 + x2

2

2(1 − v)
≤ x3 ≤ v +

x2
1 + x2

2

2(1 − v)

}
,

and a new localizing set

Ω̃1 = Ω0 ∩ Ω0,1 =
{

x : 0 < x3 < v, x3

≥ −v

2
+

x2
1 + x2

2

2(1 − v)

}
∪ (0, 0, 0)T ∪ (0, 0, v)T .

If v → 1 − 0 the set Ω̃1 containing the hetero-
clinic orbit Γ(v) = {x : x1 = 0, x2 = 0, 0 ≤ x3 ≤ v}
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collapses into the heteroclinic orbit Γ(1) = {x :
x1 = 0, x2 = 0, 0 ≤ x3 ≤ 1} of the Lanford system
for v = 1. This is also true for the localizing set

Ω̃ = Ω̃1 ∩ Ω3

=
{

x : 0 < x3 < v, x3 ≥ −v

2
+

x2
1 + x2

2

2(1 − v)
, x2

1 + x2
2

+ x2
3 ≤ 2h2,sup, x2

1 + x2
2 ≤ 2h2,sup

− (1 − v)2
}
∪ (0, 0, 0)T ∪ (0, 0, v)T . (10)

The last localization can be improved for com-
pact invariant sets having no common points with
Γ(v) by applying the third localizing procedure with
the functions h0(x) and

ĥ1(x) =
x3

x2
1 + x2

2

.

It leads to the following computations at the
first step of the third localizing procedure applied
to the set {x2

1 + x2
2 �= 0}.

1. We compute

Lf ĥ1 =
vx3 − x2

1 − x2
2 − x2

3 − 2x3(v − 1 + x3)
x2

1 + x2
2

= ĥ1(−v − 3x3) + 2ĥ1 − 1.

Therefore

Sĥ1
= {x : vx3 − x2

1 − x2
2 − x2

3

− 2x3(v − 1 + x3) = 0, x2
1 + x2

2 �= 0}

=
{

x : x2
1 + x2

2 + 3
(

x3 − (2 − v)
6

)2

=
(2 − v)2

12
, x2

1 + x2
2 �= 0

}
,

Sĥ1
∩ Ω0 = Sĥ1

, ĥ1|S
ĥ1

=
1

2 − v − 3x3
,

inf ĥ1|S
ĥ1

= inf
S

ĥ1

1
2 − v − 3x3

=
1

2 − v
,

sup ĥ1|S
ĥ1

= sup
S

ĥ1

1
2 − v − 3x3

= +∞,

Ω0,1 =
{

x : x3 ≥ x2
1 + x2

2

2 − v

}
,

Ω̂ = Ω0 ∩ Ω0,1 =
{

x : 0 < x3 < v, x3 ≥ x2
1 + x2

2

2 − v

}

∪ (0, 0, 0)T ∪ (0, 0, v)T

and we obtain the localizing set

Ω̃ ∩ Ω̂ = {x : 0 < x3 < v, x3 ≥ −v

2
+

x2
1 + x2

2

2(1 − v)
,

x3 ≥ x2
1 + x2

2

2 − v
, x2

1 + x2
2 + x2

3 ≤ 2h2,sup, x2
1 + x2

2

≤ 2h2,sup − (1 − v)2} ∪ (0, 0, 0)T ∪ (0, 0, v)T .

(11)

for compact invariant sets having no common points
with Γ(v).

The localization set (11) was derived under the
assumption that we localize compact invariant sets
outside {x2

1 + x2
2 �= 0}. Nevertheless, the set (11)

contains Γ(v) and all other compact invariant sets
from R3\(0, 0, 0)T as well.

5. General Remarks

1. The iterative localization method of compact
invariant sets (Theorem 4) works efficiently for the
Lanford system because of two reasons. Firstly, by
our choice of localizing functions we avoid a solu-
tion the conditional extremum problem introduced
in (2) by the Lagrange multiplies method. Instead
of this, we have solved the univariate extremum
problem or have found a solution from geometrical
considerations. Secondly, we have found a localiz-
ing function h (h = h1 in notations given above)
for which the polynomial Lfh1 is decomposed into
two factors such that their corresponding variables
are independent. It leads to sufficiently easy com-
putations of resulting localization sets with the help
of Theorem 4.

2. By a numerical simulation, it was demonstrated
in [Nikolov & Bozhkov, 2004] that a chaotic attrac-
tor really exists for values of the bifurcational
parameter v in a small neighborhood of the point
2/3. It corresponds to the existence of a family of
bifurcating tori for v = 2/3 approximately com-
puted for the Lanford system in cylindrical coor-
dinates in [Hassard et al., 1981]. The formula (10)
provides a localization of this attractor.

3. It was found in [Hassard et al., 1981] by using
cylindrical coordinates

x1 = r cos θ;
x2 = r sin θ;
x3 = x3
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that the Lanford system can be written as

ṙ = r(v − 1 + x3);
ẋ3 = vx3 − r2 − x2

3; (12)
θ = t

and, evidently, possesses the periodic orbit

x1(t) =
√

(1 − v)(2v − 1) cos t,

x2(t) =
√

(1 − v)(2v − 1) sin t, (13)
x3 = 1 − v.

This corresponds to our localization results
presented in formulae (7), (10), (11) because the
formula (13) defines a real-valued periodic (noncon-
stant) function only if 1/2 < v < 1.

4. It follows from the formula for Sĥ1
that it is

described by

ĥ2
1(x) +

v − 2
3(x2

1 + x2
2)

ĥ1(x) +
1

3(x2
1 + x2

2)
= 0.

We note that the discriminant of this quadratic
equation is non-negative iff

x2
1 + x2

2 ≤ (v − 2)2

12
. (14)

By Proposition 1, we deduce from the formula (14)
that each compact invariant set lying outside x1 =
x2 = 0 has points in the cylinder defined in (14).
So in the case 0.5 < v < 1 these compact invariant
sets are placed inside the set (11) and have common
points with the set (14).

5. We remark that all localizing functions applied
above can be easily written in a rational way in
cylindrical coordinates and in this case the same
localization results for the Lanford system is estab-
lished by using (12) as well. Nevertheless, if we
apply a function

g(x3, r) =
x3

r
to the system (12) we get the final improvement of a
localization of compact invariant sets in some cases.
Indeed, if ρ is the vector field corresponding to the
two first equations in (12) then we get that

Lρg =
x3 − r2 − 2x2

3

r

and the set Lρg = 0 is given by g2−gr−1/2+1/2 =
0. Its discriminant is 1 − 8r2. Again by applying
Proposition 1, we deduce that each compact invari-
ant set lying outside x1 = x2 = 0 has points in the
cylinder

x2
1 + x2

2 ≤ 1
8
. (15)

So in case 0.5 < v < 1 all these compact invariant
sets are placed inside the set (11) and have common
points with the set (15).

At last, by comparing bounds (14) and (15), we
obtain that

(v − 2)2

12
>

1
8

for 0.5 < v < 2 − √
3/2 ≈ 0.775. So in the case

v = 2/3 the bound in the formula (15) provides
us a more precise information about a location of
compact invariant sets than the bound in (14). Oth-
erwise, in the case 2 − √

3/2 ≤ v < 1, the bound
given in (14) is more precise than in (15).

6. By using other rational functions and Propo-
sition 1, one can obtain additional information
concerning a location of compact invariant sets.
Namely, let us apply h = x1/x2. Then it is easy
to obtain Lfh = −1 − h2. Thus there are no com-
pact invariant sets without common points with the
plane x2 = 0. Similarly, we apply h = x2/x1. Then
it is easy to obtain Lfh = 1 + h2. Thus there are
no compact invariant sets without common points
with the plane x1 = 0. Hence all compact invari-
ant sets contain common points with both planes
x1 = 0 and x2 = 0.

6. Conclusions

In this article we have examined the localization
problem of compact invariant sets of the system
(1) by using the iterative localization method elabo-
rated earlier for localizing periodic orbits. We have
shown that our approach works effectively in the
case of the analysis of the Lanford system for all
values of the bifurcational parameter v. The most
interesting results presented here concern localiz-
ing the chaotic attractor which has been recently
described by a numerical procedure in the existing
literature.
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