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Abstract

In this paper we study the localization problem of periodic orbits of multidimensional continuous-time systems in

the global setting. Our results are based on the solution of the conditional extremum problem and using sign-definite

quadratic and quartic forms. As examples, the Rikitake system and the Lamb�s equations for a three-mode operating

cavity in a laser are considered.

� 2004 Published by Elsevier Ltd.
1. Introduction

The localization problem of periodic orbits of nonlinear multidimensional continuous-time systems has been studied

by many researchers during last years, see papers with analytical methods based on second order extremum conditions

[1,4,6–8], with algebraic methods based on using algebraic dependent polynomials [12], with analytical methods based

on high-order extremum conditions [13,14], see also [10] and others. Now it is well known that possessing of periodic

orbits is one of essential features specifying the global dynamics of chaotical systems especially in domains containing

attractors. For example, the description of a chaotic attractor with help of infinitely many unstable periodic orbits

embedded in it is helpful in studies concerning the Lorenz system, see [3] and references therein.

The main contribution of this paper consists in obtaining ellipsoidal estimates for domains containing all periodic

orbits and for domains having no common points with any of periodic orbits. Our methods are based on the solution of

the conditional extremum problem introduced in [7] and using sign-definite quadratic and quartic forms. As examples,

we consider the Rikitake system and the Lamb�s equations for a three-mode operating cavity in a laser. This paper is the

reworked and enlarged version of the short conference paper [15].
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2. Some preliminaries and notations

We consider a polynomial system
_x ¼ F ðxÞ ¼ bþ Axþ f ðxÞ; ð1Þ
where f is a polynomial vector field of degree d without constant and linear terms; b is a constant vector; A is a constant

(n · n)-matrix; x2Rn is the state vector. If f is a homogeneous quadratic vector field then (1) is called a general quad-

ratic system. By u(x, t) we denote a solution of a general differentiable right side system
_x ¼ vðxÞ ð2Þ
with u(x, 0) = x. For any set B in Rn we denote by C{B} its complement. For any symmetric matrix T we denote by

kmax(T) its maximal eigenvalue. By diag(k 1, k2, k3) we denote the diagonal (3 · 3)-matrix with elements k1, k2, k3 on

its principal diagonal.

Let
f ðxÞ ¼ ðxTS1x; . . . ; xTSnxÞT; ð3Þ
where matrices Sj, j = 1, . . .,n, are symmetric.

Let h(x) be a differentiable function such that h is not the first integral of (1) or (2). The function h will be used in the

solution of the localization problem of periodic orbits and will be called localizing. By hjB we denote the restriction of h

on a set B � Rn. By N1(v,h) we denote the set {x 2 Rn jLvh(x) = 0}.

Let W be a subset in Rn. Let us define hinf(W) := inf {h(x) j x 2 W}; hsup(W) := sup{h(x) jx 2 W}. We shall write hinf
and hsup in case of W = Rn.

In [7,8] it was proposed to apply numbers hinf(N1(v,h)); hsup(N1(v,h)) for studying a location of periodic orbits of the

system (2). Namely, we have

Proposition 1 ([7,8]). Each periodic orbit C of (2) is contained in the set
Kh ¼ fhinfðN1ðv; hÞÞ6 hðxÞ6 hsupðN1ðv; hÞÞg: ð4Þ
As it was made in [7,8], hinf(N1(v,h)) and hsup(N1(v,h)) were computed by using the Lagrange multiplier method in

case of the Lorenz system. We construct the Lagrange function L ¼ h
 lLvh. Then corresponding critical points are

found from the system
oL

oxs
¼ 0; s ¼ 1; . . . ; n; Lvh ¼ 0: ð5Þ
By X we denote the set of x
*
2 Rn for which (x

*
,l) is a solution of (5) for some l. Therefore
hinfðN1ðv; hÞÞ ¼ inf
x2X

hðxÞ; hsupðN1ðv; hÞÞ ¼ sup
x2X

hðxÞ: ð6Þ
3. Bounds hinf(N1(v,h)) and hsup(N1(v,h)): main results

Here our goal is to sharpen Proposition 1. LetA be a surface in Rn. Suppose thatA has no common points with any

of periodic orbits of the system (2). This assumption will be referred to as Assumption 1.

Let M ¼ N1 \ CfAg. We state

Proposition 2. Let M 5 ;. Then each periodic orbit C of (2) is contained in the set
Nh ¼ fhinfðMÞ6 hðxÞ6 hsupðMÞg: ð7Þ
If M = ; then the system (2) has no periodic orbits.

The proof is made like in [7, Theorem 4].

Let us consider Assumption 1. Suppose that each component As of the set A is satisfied one of the following con-

ditions: (1) As is an invariant surface for the phase flow of the system (2) and the restriction of the system (2) onAs has

no periodic orbits; (2) the set As is contained in the equilibria set of the system (2).

Clearly, in this case Assumption 1 holds. Here we remark respecting to the case (2) that a few conditions of the non-

existence of periodic orbits for multidimensional systems are proposed in [14].
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Example 3. Consider the system
_x1 ¼ x1ð1
 x1 
 e sinðx2ÞÞ;

_x2 ¼ f2ðx1; x2Þ;
e is a parameter. Let us take the localizing function h(x) = x1. Let A be a straight line x1 = 0. Then M 5 ;. We con-

clude that Assumption 1 holds because A is invariant and has no common points with periodic orbits. Further, we

obtain that N1 is described by equations 1 
 h 
 e sin (x2) = 0 and x1 = 0. Now if 0 < e < 1 then
0 ¼ hinfðN1ðv; hÞÞ < hinfðMÞ ¼ 1
 e < hsupðN1ðv; hÞÞ ¼ hsupðMÞ ¼ 1þ e:
So each periodic orbit is contained in the set 1 
 e < x1 < 1 + e. Similarly, one can get a multidimensional version of

this example.

We remind that a surface g = 0 is called semipermeable if Lvgjg=0 > 0 or Lvgjg=0 < 0. Suppose now thatA ¼ h
1ð0Þ is
a semipermeable connected surface by the phase flow of the system (2).

Lemma 4. If N1(v,h) is a connected set then 0 ¼ hinfðAÞ6 hinfðN1ðv; hÞÞ or hsupðN1ðv; hÞÞ6 hsupðAÞ ¼ 0.

Proof. Indeed, since A \ N1ðv; hÞ ¼ ; we obtain that N1(v,h) � h
1((0,1)) or N1(v,h) � h
1((
1, 0)). The latter entails

the desirable conclusion. h

Lemma 5. Let hinf(N1(v,h)) = hsup(N1(v,h)) = c. Then every periodic orbit is contained in the set N1(v,h).

Proof. Each periodic orbit has common points with the set N1(v,h). Assume that C is a periodic orbit and x 2 C. Then
minth(u(x, t)) = maxth(u(x, t)) = c. Therefore all points of C are critical points of the function g(t) = h(u(x, t)). Hence,

they are contained in the set N1(v,h). h

If the system (2) has at least one equilibrium then
ðLvhÞinf 6 06 ðLvhÞsup:
If the system (2) has no equilibria points then we establish the following:

Proposition 6. If 0 < (Lvh)inf := inf{Lvh(x) j x 2 N1(v,Lvh)} or 0 > (Lvh)sup := sup{Lvh(x) j x 2 N1(v,Lvh)} then the system

(2) has no periodic orbits.

Proof. Suppose that the system (2) has periodic orbits. Applying Proposition 1 to the function g = Lvh, we get that all

periodic orbits are contained in the set g > 0 or g < 0. Further, applying Proposition 1 to the function h, we get that each

periodic orbit has common points with the set N1(v,h), see in [7]. This is a contradiction. h

Coming back to systems (2) possibly containing equilibria points, we can state the following property of periodic

orbits.

Proposition 7. If (Lvh)inf = 0 or (Lvh)sup = 0 then all periodic orbits are contained in the set
\1
k¼1fLk

vhðxÞ ¼ 0g: ð8Þ
Proof. Consider the case (Lvh)inf = 0. Let us take any periodic orbit C. By [7, Theorem 1], there are points x 2 C such

that Lvh(x) = 0. For each of these points the condition (Lvh)inf = 0 implies that L2
vhðxÞP 0. By [7, Theorem 2],

L2
vhðxÞ ¼ 0. Now Theorem 4 in [7] entails the fact that C � N1(v,Lvh). The latter means (8) because of local analyticity

of a solution. The case (Lvh)sup = 0 is treated similarly. h

In what follows, we consider only systems (1). Now our goal is to discuss situations when
hinf > inf
Rn

hðxÞ
or (and)
hsup < sup
Rn

hðxÞ:
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In this case the localization (4) provides us nontrivial bounds for the localization of all periodic orbits. If each of

these estimates is valid then we get the localization of all periodic orbits in the layer Kh. If both of boundary sets

h(x) = hinf; h(x) = hsup are ellipsoids then we get the ellipsoidal localization Kh.

Assume that the set N1(F,h) is compact, with h be a quadratic form. In addition, let Ell be an ellipsoid containing

N1(F,h). Then
hinf > inf
Ell

hðxÞ; hsup < sup
Ell

hðxÞ:
This idea will be exploited in the example of the Lamb�s equations for a three-mode operating cavity in a laser.

By H we denote the class of functions of the type
hðxÞ ¼ eþ Cxþ xTPx; ð9Þ
where e 2 R;C = (c1, . . .,cn); h[2](x) := xTPx is the nontrivial first integral of the homogeneous quadratic system

_x ¼ f ðxÞ. Then we notice that the degree of the polynomial LFh is less or equal 2 if and only if h is contained in H, i.e.
xTPf ðxÞ � 0: ð10Þ
Indeed, it follows from the formula
LF hðxÞ ¼ 2xTPf ðxÞ þ xTðATP þ PAÞxþ Cf ðxÞ þ CAxþþ2bTPxþ Cb: ð11Þ
Finding of matrices P satisfying the condition (10) is reduced to a solution of a system of linear homogeneous equa-

tions respecting to coefficients of P.

Example 8. Consider the system (1) with a quadratic f and b = 0. Suppose that hðxÞ ¼ xTPx 2 H. Let the matrix

ATP + PA be sign-definite. Then it follows from (11) that
hjN1ðF ;hÞ ¼ hð0Þ:
Therefore all periodic orbits are contained in the set h
1(0). If P is sign-definite then our system has no periodic

orbits.
4. Compactness of the surface LFh(x) = 0

In this section we examine the problem of checking that the surface
gðxÞ :¼ LF hðxÞ ¼ 0 ð12Þ
is a compact set. Let gðxÞ ¼
Pp

s¼0g½s�ðxÞ;where g[s] is a sth homogeneous part of the polynomial g, s P 1; g[0](x) is a real

number.

By using [7], we remark that (12) defines a compact set if
min
kxk¼1

g½p�ðxÞ > 0: ð13Þ
Let us consider two cases.

1. Let d = 2 in (1). Assume that h taken from (9) is contained in H. Then the surface
LF hðxÞ ¼ xT ATP þ PAþ
Xn
i¼1

ciSi

 !
xþ CAxþ 2bTPxþ Cb ¼ 0 ð14Þ
is compact if and only if the matrix ATP þ PAþ
Pn

i¼1ciSi is sign-definite. Here we meet the following problem: when can

we find some symmetric matrix P such that the corresponding h is contained in H and the matrix
M ¼ ATP þ PAþ
Xn
i¼1

ciSi
is sign-definite?

Suppose that one can find a couple of matrices Sl1
; Sl2

(we can consider that l1 = 1;l2 = 2 after a proper renumeration)

satisfying the Stewart condition [16]: z*(S1 + iS2)z 5 0 for any nonzero z 2 Cn; here i2 = 1. In this case there is h such

that (cosh)S1 + (sinh)S2 is a positive definite matrix where h is obtained by the algorithm from [2]. Let us put a1* =


cosh; a2* = 
sinh; aj* = 0, j=3,. . .,n. Then
P

aj�Sj < 0 and there is l > 0 such that
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ATP þ PAþ l
X

aj�Sj < 0: ð15Þ
Indeed, let us solve the inequality
kmax ATP þ PAþ l
X

aj�Sj

� �
< 0
with respect to l. By the classical Weil theorem [5],
kmax ATP þ PAþ l
X

aj�Sj

� �
6 kmax ATP þ PA

� �
þ lkmax

X
aj�Sj

� �
:

Hence, if
l > 
kmaxðATP þ PAÞk
1
max

X
aj�Sj

� �
;

then (15) is valid.

So if cj = laj*, j = 1, . . .,n, then the corresponding matrix M < 0. As a result, if the Stewart condition is valid for some

pair of matrices from {Ss, s = 1, . . .,n} then for any function h½2� 2 H one can take C such that the surface LFh = 0 is

compact which leads to a nontrivial localization given in Proposition 1.

If there is h 2 H with P > 0 then this nontrivial localization is ellipsoidal, i.e. the set Kh is located between two ellip-

soids defined by h(x) = hinf and by h(x) = hsup.

The geometrical consequence of this fact is the dissipativity property of the system (1): each trajectory falls into the

ellipsoid h(x) = hsup and does not leave it.

Suppose now that there is P = PT > 0 such that (10) holds. Ellipsoids h(x) = const have the common center in the

point x
*
= 
0.5P
1CT. Without lost of generality one can suppose that e is chosen in a such way that h(x

*
) = 0, i.e.

e = CP
1CT/4. If x
*
is not contained in the surface LFh(x) = 0 then hinf > 0. Therefore all periodic orbits have no com-

mon points with the interior of the nontrivial ellipsoid h(x) = hinf. By computations we establish that the condition

LFh(x*)5 0 has the form
1

4
C P
1AT þ AP
1 þ

Xn
i¼1

ciP
1SiP
1

 !
CT 
 1

2
CAP
1CT 6¼ 0:
2. Let us take a cubic 3-dimensional system _x ¼ F ðxÞ ¼ bþ Axþ f½2�ðxÞ þ f½3�ðxÞ, where f[i](x) is the homogeneous

polynomial vector field of the degree i = 2; 3. Let f½3�ðxÞ ¼
P3

i¼1xiðxTSi1x; xTSi2x; xTSi3xÞT, ST
ij ¼ Sij, h(x) = xTPx,

PT = P.
By [7, Assertion 3], if
ðLF hÞ½4�ðxÞ > 0; jjxjj ¼ 1 ð16Þ
or
ðLF hÞ½4�ðxÞ < 0; jjxjj ¼ 1; ð17Þ
holds then the set described by LFh(x) = 0 is compact. Sufficient conditions for the existence of P with this property can

be derived as follows. Let Sij = (sijkm). We get that
ðLF hÞ½4�ðxÞ ¼ 2
X
i

xixTP ðxTSi1x; xTSi2x; xTSi3xÞT ¼ 2
X
i

xi
X
j;k

xjpjkðxTSikxÞ ¼ 2
X

i;j;k;l;m

pjksiklmxixjxlxm:
Suppose that coefficients of quartic monomials
x3i xj; i 6¼ j; x21x2x3; x1x22x3; x1x2x23
are eliminated for some choice of the matrix P. It is expressed in terms of the overdetermined linear system of equations

respecting pjk with coefficients depending on siklm. Then there is a symmetric matrix G = (gij)i, j = 1,2,3 such that
ðLF hÞ½4�ðxÞ ¼ yTGyjyi¼x2i ; i¼1;2;3:
Now if G is a sign-definite matrix or gii > 0, gij P 0 (gii < 0, gij 6 0) then one of inequalities (16) and (17) holds.

Hence, in these cases the surface LFh(x) = 0 is a compact set.

We provide computations in the following example. Suppose that Si := Sii is a diagonal matrix with elements sij,

j = 1,2,3 on its main diagonal. Besides, let Sij = 0 for i 5 j; i, j, = 1,2,3. We take h(x) = xTx. By S we denote the matrix

(sij)i,j = 1,2,3. In this case
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ðLF hÞ½4�ðxÞ ¼ 2
X3
i¼1

sjjx4j þ
X
i 6¼j

ðsij þ sjiÞx2i x2j

 !
¼ yTðS þ STÞyjyi¼x2i ; i¼1;2;3:
So if the matrix S + ST is sign-definite or sii>0, sij P 0 (sii < 0, sij 6 0) then (12) defines a compact set.
5. Application 1: the Rikitake equations

Consider the Rikitake system [11]
_x1 ¼ 
lx1 þ x2x3;

_x2 ¼ 
ax1 
 lx2 þ x1x3;

_x3 ¼ 1
 x1x2;
where a and l are positive parameters.

Firstly, we mention that Hardy and Steeb [4] obtained the following result for the Rikitake system: an ellipsoidal

domain of a general location containing all periodic orbits is not existed. Below in this section we find ellipsoidal do-

mains which have no common points with any periodic orbit of the Rikitake system.

By solving (10), we get P = diag(p11,p22,p11 + p22) and the set H consists of polynomials
hðxÞ ¼ p11x
2
1 þ p22x

2
2 þ ðp11 þ p22Þx23 þ Cxþ e:
Let us compute the function
LF hðxÞ ¼ xTMxþ ð
c1l 
 c2aÞx1 
 c2lx2 þ 2ðp11 þ p22Þx3 þ c3;
where
M ¼

2p11l d=2 c2=2

d=2 
2p22l c1=2

c2=2 c1=2 0

0
B@

1
CA
and d = 
2p22a
c3.

Let us specify coefficients of LFh:
c2 ¼ 0; c3 ¼ 
2p22a; p11 > 0; p22 > 0:
Then P > 0. As a result,
hðxÞ ¼ p11x
2
1 þ p22x

2
2 þ ðp11 þ p22Þx23 þ c1x1 
 2p22ax3 þ e

¼ p11ðx1 þ c1=p11Þ
2 þ p22x

2
2 þ ðp11 þ p22Þðx3 
 p22aðp11 þ p22Þ


1Þ2
with e ¼ c21=p11 þ p222a
2ðp11 þ p22Þ


1
. The surface LFh(x) = 0 is the set given by the equation
2lðp11x21 þ p22x
2
2Þ 
 c1x2x3 þ c1lx1 
 2ðp11 þ p22Þx3 þ 2p22a ¼ 0: ð18Þ
Surfaces h(x) = const are ellipsoids with centers in the point
x� ¼ ð
c1=p11; 0; p22aðp11 þ p22Þ

1Þ:
The point x
*
is not contained in the surface (18) because LF hðx�Þ ¼ 
lc21=p11 6¼ 0. For any x 5 x

*
we obtain that

h(x) > 0. Hence hinf > 0 and all periodic orbits have no common points with the interior of the nontrivial ellipsoid

h(x) = hinf.
6. Application 2: the Lamb’s equations for a three-mode operating cavity in a laser

The Lamb�s equations for a three-mode operating cavity in a laser have the form of (1), [9],
_x1 ¼ k1x1 
 a11x31 
 a12x1x22 
 a13x1x23;

_x2 ¼ k2x2 
 a21x2x21 
 a22x32 
 a23x2x23;

_x3 ¼ k3x3 
 a31x3x21 
 a32x3x22 
 a33x33:
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Suppose that all parameters ks; aij are positive numbers. We take the localizing function hðxÞ ¼ 1
2
ðx21 þ x22 þ x23Þ. By

computations, we obtain that
LF h ¼
X3
s¼1

ksx2s 

X3
s¼1

assx4s 
 ða12 þ a21Þx21x22 
 ða13 þ a31Þx21x23 
 ða23 þ a32Þx22x23:
It is clear that hinf = 0. Further, LFh can be estimated in the following way:
LF h6
X3
s¼1

ksx2s 

X3
s¼1

assx4s ¼
X3
s¼1

ð
assðx2s 
 ksa
1
ss =2Þ

2 þ k2
s a


1
ss =4Þ:
Now if LFh(x) = 0 then for any j, j = 1,2,3, we obtain that ajjðx2j 
 kja
1
jj =2Þ

2
6
P3

s¼1k
2
s a


1
ss =4. So
x2j 6
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
s¼1

k2
s a


1
ss =ajj

vuut þ kja
1
jj =2; j ¼ 1; 2; 3:
The latter estimate entails
hsup 6
1

2

X3
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
s¼1

k2
s a


1
ss =ajj

vuut þ kja
1
jj =2

0
@

1
A:
Thus, each periodic orbit is contained in the sphere of the radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
s¼1

k2
s a


1
ss =ajj

vuut þ kja
1
jj =2

0
@

1
A

vuuut

centered at the origin.
7. Conclusions

In this paper the localization problem of periodic orbits of nonlinear multidimensional continuous-time systems is

examined. We present new results concerning ellipsoidal estimates for domains containing all periodic orbits and for

domains without common points with any of periodic orbits. Previous results concerning ellipsoidal localization con-

tained in [15] have been further improved in this paper in the sense that better bounds for ellipsoidal estimates are ob-

tained here. The key idea of our approach consists in solving the conditional extremum problem described in [7] and

using sign-definite quadratic and quartic forms. Our results are applied to the analysis of the Rikitake system and the

Lamb�s equations for a three-mode operating cavity in a laser. Future researching challenge is to get ellipsoidal esti-

mates for periodic orbits of polynomial systems by using polynomials of even degrees 2d P 4. Also, it is of interest

to apply this approach to the localization of compact invariant domains (attractors or repellers).
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