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Abstract. 
A general method for estimation of domains with limit cycles and finding surfaces with the traces of all cycles 
is proposed. Corresponding estimations of domains with cycles for piecewise linear systems and Chua system 
are indicated. 

1 INTRODUCTION 

The many properties of nonlinear system 

j: = f (z) ,  z E R", f (z)  E Cm(R") (1.1) 

depend on the existence of periodic oscillations in 
system (1.1). 

Any T-periodic solution z ( t ) ,  x ( t + T )  = z ( t ) ,  to the 
nonlinear syst,em (1.1) specifies the mapping R -+ 
Rn, t + z ( t ) ,  and image is called a limit cycle (or a 
cycle) of system (1.1). 

In present time there is no analytical algorithm for 
finding limit cycles of dynamic systems. Usually 
they find limit cycles by means numerical methods. 
For using these methods we need to  know two sets. 
They are a set of initial states and a set containing 
all limit cycles. 

In the present paper we consider localization prob- 
lem of the periodic oscillations for dynamic systems 
(1.1) in the following settings: 1) For system (1.1) 
find a surface S such that any limit cycle of system 
(1.1) either intersects or touches S. This surface is 
called Poincare universal intersection and it is a set 
of initial states for numerical integration; 2) For sys- 
tem (1.1) find a set R such that all limit cycles of 
system (1.1) are in R . 

2 LOCALIZATION METHOD 

For cp E C1(Rn) denote by Lfcp derivative of the 
function cp with respect to system (l.l), i.e. 

n 

Lf 'p(Xc)  = f i ( x ) M x ) / a x i ,  
i= 1 

Theorem 2.1 For any function cp E C1(Rn), any 
cycle of system (1.1) contains ut least two points of  
the set [1-2] 

s, = {. : Lfcp(2) = O } .  (2.1) 

For the function 'p E C1(Rn) we put 

Theorem 2.2 For any function 'p E C1(R7'), all 
limit cycles of system (1.1) belong to the set [1-2] 

fi, = {. : Pinf 5 'p(z) 5 ' p s u p } .  (2.3) 

Collorary 2.1 All limit cycles of system (1.1) be- 
long to the set [1-2] 

R = {nR,,cp E C'(R'')}. (2.4) 

3 PIECEWISE LINEAR SYSTEM 

Let system (1.1) be a piecewise linear system of the 
form 

Ax + b,  XI 5 -1 ,  
x =  { Aox, lzll < 1  (3.1) 

A x + c ,  2 1  2 1 ,  

where x, b,  c E R", and matrices A, A0 E Mn(R). 

Any real matrix A can be transformed by a trans- 
formation T-lAT = A' into Jordan canonical form 
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A' = diag ( J l ( X l ) ,  J z ( X z ) ,  . . . , Jm(Xm)) ,  where Xk, 

IC = G, are the roots of the characteristic equa- 
tion of matrix A ,  and J,(X,), s = l,m are canonical 
Jordan blocks. Then in the new variables z = T-lx 
system j: = Ax + c has the form i = A'z + T.-lc. 

If the condition Re& # 0 is fulfilled for any root 
Xk of the characteristic equation of matrix A ,  then 
there exists a function 

n 

@ ( z )  = C d j Z j z 1  (3.2) 
j=1  

where dj  # 0, Id j (  > q j ,  such that the surface Sa is 
an ellipsoid El,. For this function and the system 
x = Ax +- b the corresponding surface SQ is also an 
ellipsoid El,. For function (3.2) and the system j. = 
ilex the corresponding surface Sa = {z l zTWz = 0} 
is a cone Ca # 0. Therefore, for function (3.2) and 
piecewise linear system (3.1) we get 

Sa = (El,, n {z: z~(z) 5 - 1 ) )  

U(E1, n { z :  q ( z )  2 1 ) ) .  
U(& n {z: lx l (z) l  < 1 ) )  (3.3) 

Theorem 3.1 For  piecewise linear system (3.1), if  
1) the system (3.1) is a continuous one; 2) ReXk # 0 
for any root X k  of the characteristic equation for ma- 
trix A; 3) the intersection of n-dimensional ellipsoid 
El, and the hyperplane x1(z) = 1 is an (n - 1)-  
dimensional ellipsoid; then surface (3.3) is a com- 
pact  set. 

Theorem 3.2 For continuous piecewise linear sys- 
tem (3.1), if the conditions of Theorem 3.1 are ful- 
filled, then there exists a compact set 

n = Cl* n Clat 

containing all limit cycles of system (3.1), where @ 
and @' are different functions of the form (3.2). 

(3.4) 

4 CHUA CIRCUIT 

The Chua's circuit is a rather simple electronic os- 
cillator (in the simplest case it consists of only four 
linear elements and one nonlinear element). So the 
Chua's circuit is a very suitable subject for study by 
means of both laboratory experiments and computer 
simulations because it admits an adequate modelling 
via the language of differential equations. 

Consider the simplest case Chua's equations written 
in the following dimensionless form [3]: 

i = a(y - h ( x ) ) ,  
Ij = x - y + z ,  (4.1) 
i = -by,  

where h ( z )  = m ~ x  + 0.5(mo + ml)( 13: - 11 - (2  + I ( ) ,  
a > 0, b > 0, mo > 0, ml > 0. Let Z = ( x , y , ~ ) ~  E 
R3. System Chua is a example of continuous piece- 
wise linear systems. The system (4.1) is considered 
to be a Chua system if its equilibrium points are 
not asymptotically stable. Find all these points and 
research their characters. 

The system (4.1) has three equilibrium points: 

1) Ol(mo + m l ) / m ~ ,  0 ,  -(ma + ml)/ml)  in the do- 
main {x > l}; 

2 )  03(0,0,0)  in the domain (1x1 < 1); 

3) O~(-(mo+ml)/ml ,O,  (mo+m~) /ml )  in the do- 
main { x  < -I}. 

In the domain { 1x1 < l} the point 0 3  is unstable. In 
the doma,in (1x1 2 l} system (4.1) has the following 
Jacoby matrix: 

A =  ( -"1 :) , 
-b 0 

and the characteristic equation for A is 

X3 + (1 + um1)X2 + ( b  - U +  ~ml )X  + ubml = 0. (4.2) 

The points 0 1  and 0 2  are not asymptotically stable 
if and only if 

(1 + uml)(aml + b - a )  - abml 5 0. (4.3) 

Under this condition system (4.1) is a Chua system, 
and in the further consideration we suppose that it 
is fulfilled. 

Theorem 4.1 Characteristic equation (4.2) for the 
matrix A of system (4.1) has no roots with null real 
part Zff (1 + aml)(aml + b - U )  - ubml # 0.  

Proof. In the domain { 1x1 2 1) characteristic equa- 
tion (4.2) has no null roots due to  the fact that 
abml > 0. Let X = p i  be an imaginary root of 
(4.2), p E R', p # 0.  If we submit X = pi into 
equation (4.2), then we will have 

[-(I +am1)p2 +abml] + i [ - p 3  + p ( ~ m l  + b-  U ) ]  = 0,  

i.e. 
abml - (1 +am1)p2 = 0, 
pL(am1 + b - u - p 2 )  = 0. 

Since p # 0, we receive 

p2 = abml/(l+ urnl) = am1 + b - a 



So equation (4.2) has an imaginary root under the 
conduction (1 + aml) (aml+ b - U )  - abml = 0. This 
completes the proof of Theorem 4.1. D 

In the further consideration we insist that 

(1 + aml) (aml  + b - a) - abml < 0 (4.4) 

in accordance with both (4.3) and the condition of 
Theorem 4.1. In this case it is possible to  use all the 
results obtained for piecewise linear systems. 

Theorem 4.2 For Chua system (4.1) there exists 
a quadric quantic 

p(?) = ax2  +py2+yz2+2Xxy+2pxz+26yz, (4.5) 

such that the set S, as a compact surface. 

Proof. For function p(?) (4.5) the Lie derivation 
with respect to  the system (4.1) is 

Lf’P(3) = 2{XZ2 - acrh(x)x + (ax - p - bb)y2+ 
+ 6x2 + (aa  + p - x - bp)xy - aXh(z)y+ 
+ (A + 6)xz - a p h ( z ) z  + (up + p - 6 - by)yz}. 

Since h(z)  = mlx + 0.5(mo + ml)(lx - 11 - 111: + I \ ) ,  
in the domain (1x1 2 l }  

Lf’P(Z) = 2{(X - um1a)22 + (ax - p - bS)y2+ 

+ (A + 6 - am1p)zz  + (up + p - 6 - by)yz+ 
+ sign(x)a(mo + m l ) ( a z  + Ay + pz)} .  

+ 62’ + (aai + ,D - X - b p  - a m l A ) ~ y +  

Put 
c1 = X - amla, c2 = aX - ,LJ - bS, 
c3 = 6, c4 = aa + p - X - bp - amlX, 
c5 = + 6 - amlp ,  c6 = + p - 6 - by, 

and 
2 C l  c4 c5 

c = ( :; 2 ;c3 ) 
The quadric of Lf’p(?) is a positive definite quadric 
quantic iff 

(4.6) 
A1 = ~1 > 0, A2 = 4C1C2 - cq2 > 0, 
A3 = d e t C  > 0. 

Supposing 

then system (4.6) turns into the following system of 
conditions: c1 > 0, e2 > 0, c3 > 0. In the original 
parameters of function (4.5) we get the equivalent 
system: 

c4 = c5 = c(j = 0, 

6 > 0, x > mxd26/(1- rnldl), 
(dlX + d z S ) / a  < a < X/(am1), 
p = (1 + am1)X - aa + bp, 
p = + 6)/(am1), = (P  + - 4 / b ,  

(4.7) 

where dl = b/(aml) + 1 + am1 - a ,  dz = b ( 1  + 
aml ) / ( aml ) .  It is clear that this system is solvable 
and its solutions can be founded by the following 
way. First, in accordance with (4.7) we can choose 
6, A, a and then calculate p, /3 and y. Under con- 
ditions (4.7) the surface s, is a part of the ellipsoid 

in the domain {z >_ I}, where 

Pl = a(mo + m1)a/(2c1), 
P2 = a(m0 + m1)V(2c2), 
P3 = 4mo + m1)p/(2c3), 
R2 = ~ 1 ~ 1 ~  + c2pZ2 + ~3p3’, 

(4.9) 

and in the domain { x  5 -1} the surface S,  is a part 
of the ellipsoid 

The intersection of the plane x = 1 and ellipsoid 
(4.8) is the ellipse 

C Z ( ~  + ~ 2 ) ~  + C ~ ( Z  + ~ 3 ) ~  R i2 ,  x = 1, (4.11) 

and the intersection of the plane x = -1 and ellip- 
soid (4.10) is the ellipse 

cZ(y - ~ 2 ) ~  + cg(z - ~ 3 ) ~  = R12, z = -1, (4.12) 

where 

Ri2 = c2pn2 + ~ 3 ~ 3 ’  - (1 + 2pi)ci. (4.13) 

Therefore, the intersection of the surface S, and the 
planes x = 1 and x = -1 are the ellipses (4.11) and 
(4.12) respectively, if 

Ri2 2 0. (4.14) 

This condition is an essential for the coeficients of 
the function p(%), however, it is always possible to 
take 6, A, a that satisfy (4.7) and (4.14) as well. In 
fact, let 6 and X be already taken in accordance with 
(4.7). Since 

Rf = ~ ( m o  + mi)’AX”/(4(a - (diX + & 6 ) / a ) )  
- - amoa + (mo + + 6)’/(46mi2), 

then lim R12(a) = +CO, where a0 = (dlX+dzd)/a. 

Hence, there exists a in some neighbourhood of a0 

such that R12(a)  2 0. 

a+ao 

Since h(x) = -mox in the domain (1x1 < l}, 

Lf’p(%) = 2{(X + amoa)x2 + (ax - p - bb)y2+ 
+ 6 2 2  + xy(aa + p - x - bp + amox)+ 
+ zz(X + 6 + amop) + y z ( a p  + p - 6 - by)}, 
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and if we recall (4.9), in this domain we obviously 
obtain S, given as 

(4.15) C l ( l +  2p1)x2 + c2y2 + c32+  
+ 2Czp2Zy + 2C3p3XZ = 0, (XI < 1. 

Since the intersection of S, and the planes x = 1 
and x = -1 are the ellipses (4.11) and (4.12) (due 
to  RI2 2 0), in the domain (1x1 2 l} the surface 
S, is a compact set. Now, by Theorem 3.1 S, 
is a compact set in the whole phase space. This 
completes the proof of Theorem 4.2. D 

Thus, any limit cycle of system (4.1) contains at 
least two points of the surface S, given as 

(1 + 2Pl)CIX2 + czy2 + C3Z2+ 

+ 2p2c2xy + 2p3c3xz = 0, 1x1 < 1, 
(4.16) 

where c1, c2, c3 , pl , p2,  p3 and R2 are given by (4.9). 
All the limit cycles belong to the corresponding set 

I 
a,. 

Theorem 4.3 For system (4.1) there exists the 

tem belong to R.  
compac t  set R such, t h a t  all  l i m i t  cyc l e s  of the sys -  

Proof. Since for the system Chua Theorem’s 3.1 
conditions are valid, by Theorem 3.2 there exists a 
compact set R as intersection (3.4). D 

Example. Consider an example of Chua system, 
where 

a = 9, b = 10017, mo = 1/7, ml = 217. 
(4.17) 

The system with these parameters’ values is charac- 
terized with chaotic motions [3]. Equilibrium points 

unstable. Since condition (4.4) holds it’s possible 
to  use obtained results. With reference to (4.7) we 
choose the function 

01 (3/2,0, -3/2), 0 2  (-3/2,0,3/2), 03(0,0,0)  are 

(4.18) 
~ ( 3 )  = 3s2 + 1 3 3 . 7 1 ~ ~  + 13.7z2+ 

+ 34xy + 14x2 + Zyz, 

and the surface S, according to (4.16) is 

(x + 0.27)2/43.17 + (y + 6.56)2/80.17+ 

(x - 0.27)2/43.17 + (y - 6.56)2/80.17+ 

2 0 . 8 6 ~ ~  + 5y2 + z2+ 

+ ( z  + 13.5)2/400.84 = 1, 

+ ( z  - 13.5)2/400.84 = 1. 

x 2 1, 

x 5 1, 

Iz/ < 1. + 6 5 . 5 7 ~ ~  + 27x2 = 0, 
(4.19) 

To define the set 0, we need to solve a conditional 
extremum problem for the function (4.18) under 
condition (4.19). Using the numerical methods we 
obtain the localization set: 

0, = { I C  I - 6.15 5 c ~ ( I C )  5 34338.32). 

For function cp’(E) = 5s2 + 1 1 5 . 7 1 ~ ~  + 1 2 . 4 4 ~ ~  + 
34xy + 14x2 + 2yz, in the same way, we obtain the 
new localization set 

R ~ J  = { E 1 - 7.30 5 ~ ‘ ( 5 )  5 30279.66 }, 

It is proved that the cones cp(E)  = 0 and cp’(Z) = 0 
have the only common point 3 = 6. So, by Theorem 
3.2 the set R = R, nR,, is a compact set containing 
all limit cycles of the Chua system with parameters’ 
value (4.17). 

5 CONCLUSION 

The suggested method can be efficiently used for 
solving the localization problem for periodic orbits 
of ordinary differential systems in various fields of 
science and technology. Here we use it for piecewise 
linear systems, the Chua’s circuit in radiophysics 
and nonlinear electronics. We have shown that the 
method is very useful and efficient and it can give 
new interesting results. 
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